منابع مشابه
On a singular nonlinear semilinear elliptic problem
where K(x)μC2,b(V9 ), a, pμ(0, 1) and l is a real parameter. Such singular elliptic problems arise in the contexts of chemical heterogeneous catalysts, nonNewtonian fluids and also the theory of heat conduction in electrically conducting materials, see [3, 5, 8, 9] for a detailed discussion. Obviously (1.1) cannot have a solution uμC2(V9 ) if K(x) is not vanishing near ∂V. However, under variou...
متن کاملA nonlinear singular perturbation problem
Let F (uε) + ε(uε − w) = 0 (1) where F is a nonlinear operator in a Hilbert space H, w ∈ H is an element, and ε > 0 is a parameter. Assume that F (y) = 0, and F ′(y) is not a boundedly invertible operator. Sufficient conditions are given for the existence of the solution to (1) and for the convergence limε→0 ‖uε−y‖ = 0. An example of applications is considered. In this example F is a nonlinear ...
متن کاملDiscrete Neumann boundary value problem for a nonlinear equation with singular φ-Laplacian
which is a discrete analogue of the Neumann problem about the rotationally symmetric spacelike graphs with a prescribed mean curvature function in some Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes, whereψ (s) := ∫ s 0 dt g(t) ,ψ –1 is the inverse function ofψ , and H :R× [2,N – 1]Z →R is continuous with respect to the first variable. The proofs of the main results are based upon the Br...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملOn a Singular Limit Problem for Nonlinear Maxwell's Equations
In this paper we study the following nonlinear Maxwell's equations "E t + (x; jEj)E = rH+F; H t + rE = 0, where (x; s) is a monotone graph of s. It is shown that the system has a unique weak solution. Moreover, the limit of the solution as " ! 0 converges to the solution of quasi-stationary Maxwell's equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Opuscula Mathematica
سال: 2014
ISSN: 1232-9274
DOI: 10.7494/opmath.2014.34.2.271